Regulated at the Treatment Plant Data (UTRWD)

WATER FROM UPPER TRINITY REGIONAL WATER DISTRICT CONSTITUENTS DETECTED FOR 2022

	UTRWD Source Water -	Name: Lewisvi	Type: Surfa	Type: Surface Water - Location: Denton/Delta and Hopkins Counties				
Date	Substance	Maximum Amount in UTRWD Water	Range in UTRWD Water	MCL	MCLG	Possible Source		
			Regulated at the Tr	eatment Pl	ant			
9/15/2022	Barium (ppm)	0.04 mg/L	0.038 - 0.040	2.0 ppm	2.0 ppm	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits.		
Mar - 2022	Bromate* (ppb)	6.89 ug/L	4.58 - 6.89	10.0 ppb	0.0 ppb	By-product of drinking water disinfection.		
1/25/2022	Cyanide (ppb)	38.3 ug/L	ND - 38.3	200 ppb	200 ppb	Discharge from steel/metal factories; Discharge from plastic and fertilizer factories.		
1/25/2022	Fluoride** (ppm)	0.24	0.196 - 0.240	4.0 ppm	4.0 ppm	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories.**		
3/3/2022	TOC (ppm)	3.4 mg/L	2.34 - 3.4	π	n/a	Naturally present in the environment.		
11/15/2022	Turbidity*** (NTU)	0.29 NTU	0.06 - 0.29	0.30 NTU	n/a	Soil runoff.		
		Synthetic Orga	nic Chemicals Inclu	ling Pestici	des and H	erbicides		
9/15/2022	Atrazine (ppb)	0.2	ND - 0.2	3.0 ppb	3.0 ppb	Runoff from herbicide used on row crops.		

"the MCL for Bromate is the running annual average of monthly everages, computed quarterly (30 TAC 290.114(b)(C)

You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly, or immunocompromised persons such as those undergoing chemotherapy for center; those who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care provider. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline at (800) 426-4791. Upper Trinity continues to analyze our source water for the presence of Cryptosporidium. Cryptosporidium has never been detected in any samples of Upper Trinity water.

*=MRDL ^=MRDLG

Synthetic Organic Chemicals Including Pesticides and Herbicides

Year	Contaminant	Maximum	Range	MCL	MCLG	Unit of		
		Level		Level	Level	Measure	Violation	Source of Contaminant
9/27/2	l Atrazine	0.20	<0.1-0.2	3	3	ppb	N	Herbicide runoff.
2/23/27	l Simazine	0.09	<0.06-0.09	4	4	ppb	N	Effluents at manufacturing sites, Runoff from herbicides.

Radioactive Contaminants

Year	Contaminant	Maximum Level	Range	MCL Level	MCLG Level	Unit of Measure	Violation	Source of Contaminant
9/16/20	15 Combined Radium	n 1.5	NA	5	0	pCi/L	N	Erosion of natural deposits.

Maximum Residual Disinfectant Level

Year Disinfectant		Average	Minimum	Maximum	MRDL	MRDLG	Unit of		
	Residual	Level	Level	Level			Measure	Violation	Source of Contaminant
2022	Chloramine Residual	2.76	0.6	4.0	4	4	mg/l	N	Water additives used to control microbes.

Disinfection Byproducts

Year	Contaminant	Highest Level	Range of Individual	I MCLG	MCI	Unit of		
		Detected	Samples			Measure	Violation	Likely Source of Contaminant
2022	Haloacetic Acids	6	3.3-9.9	No goal for the total	60	ppb	N	Byproduct of drinking water disinfection.
2022	Total Trihalomethanes	16	10.4-20.5	No goal for the total	80	ppb	N	Byproduct of drinking water disinfection.

Lead and Copper

Year	Contaminant	The 90th	Number of Sites		Action	Unit of			
		Percentile	Over Action Level	MCLG	Level	Measure	Vio	ation	Source Of Contaminant
2022	Lead	2.7	0	0	15	ppb	N	Corrosion	of household plumbing systems; erosion of natural deposits.
2022	Copper	0.7928	0	1.3	1.3	ppm	N	Corrosion o	of household plumbing systems; erosion of natural deposits;
								leaching	from wood preservatives.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. This water supply is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead."

CORINTH 2022

Annual Drinking Water Quality Report

PHONE NO: 940-498-7501

Special Notice

You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly, or immunocompromised persons such as those undergoing chemotherapy for cancer; those who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care provider. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline at (800) 426-4791.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. We cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead.

[&]quot;LITRWD does not add fluoride to its water

^{100%} of samples were under the 0.3 NTU turbidity limit for 2022

Public Participation Opportunities

None Scheduled

Corinth City Hall Business Hours

Monday through Thursday 7:30am to 5:00pm

> Friday 7:30am to 11:00am

Phone Number (940) 498-3200

For more information contact Gary Parker (940)498-7520

WATER SOURCES: The sources of the drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals, and in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include: (a) microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife: (b) inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming; (c) pesticides and herbicides, which might have a variety of sources such as agriculture, urban storm water runoff, and residential uses; (d) organic chemical contaminants, including synthetic and volatile organic chemicals, which are byproducts of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems; and (e) radioactive contaminants, which can be naturally occurring or the result of oil and gas production and mining activities. For more information about your source of water, refer to the Source Water Assessment Viewer at:

URL:www.tceq.texas.gov/gis/swaview

The TCEQ has completed a Source Water Assessment for all drinking water systems that own their sources. The report describes the susceptibility and types of constituents that may come into contact with your drinking water source based on human activities and natural conditions. The system(s) from which we purchase our water received the assessment report. For more information on source water assessments and protection efforts at our system, contact Tim Brazil, Water Operations Superintendent, with UTRWD, at (972) 436-2379.

Este reporte incluye informaagua para tomar. Para asistencia en español, por favor de llamar al telefono (940) 498-3200.

Where do we get our drinking water?

The source of drinking water used by CITY OF CORINTH is Purchased Surface Water from UTRWD Regional Water Treatment Plant. UTRWD Regional Water Treatment Plant comes from the following Lake: LAKE LEWISVILLE in Denton County. A Source Water Susceptibility Assessment for your drinking water sources(s) is currently being updated by the Texas Commission on Environmental Quality. This information describes the susceptibility and types of constituents that may come into contact with your drinking water source based on human activities and natural conditions. The information contained in the assessment allows us to focus our source water protection strategies. Some of this source water assessment Information is available on Texas Drinking Water Watch at http://dww2.tceq.texas.gov/DWW. For more information on source water assessments and protection efforts at our system, please contact us.

ALL drinking water may contain contaminants.

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Contaminants may be found in drinking water that may cause taste, color, or odor problems. These types of problems are not necessarily causes for health concerns. For more information on taste, odor, or color of drinking water, please contact the system's business office.

More information about contaminants and potential health effects can be obtained by calling the EPA's Safe Drinking Water Hotline (1-800-426-4791).

Secondary Constituents

Many constituents (such as calcium, sodium, or iron) which are often found in drinking water can cause taste, color, and odor problems. The taste and odor constituents are called secondary constituents and are regulated by the State of Texas, not the EPA. These constituents are not causes for health concern. Therefore, secondaries are not required to be reported in this document but they may greatly affect the appearance and taste of your water.

About The Following Pages

The pages that follow list all of the federally regulated or monitored contaminants which have been found in your drinking water. The U.S. EPA requires water systems to test for up to 97 contaminants.

DEFINITIONS

The following tables contain scientific terms and measures, some of which may require explanation.

Maximum Contaminant Level (MCL)

The highest permissible level of a contaminant in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG)

The level of a contaminant in drinking water below which there is no known or expected health risk. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL)

The highest level of disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

DEFINITIONS CONTINUED...

Maximum Residual Disinfectant Level Goal (MRDLG)

The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contamination.

Average Level

Regulatory compliance with some MCLs are based on running annual average of monthly samples.

Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Action Level Goal (ALG): The level of a contaminant in drinking water below which there is no known or expected risk to health. ALGs allow for a margin of safety.

<u>Level 1 Assessment</u>: A Level 1 assessment is a study of the water system to identify potential problems and determine (If possible) why total coliform bacteria have been found in our water system.

Level 2 Assessment: A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.

ABBREVIATIONS

NTU - Nephelometric Turbidity Units

pCi/L -picocuries per liter (a measure of radioactivity)

ppm - parts per million, or milligrams per liter (mg/l)

ppb - parts per billion, or micrograms per liter (µg/L)

ppt -parts per trillion, or nanograms per liter

ppq -parts per quadrillion, or picograms per liter

TT – treatment technique: a required process intended to reduce the level of a contaminate in drinking water.

MFL - million fibers per liter (a measure of asbestos)

na – not applicable

mrem — millirems per year (a measure of radiation absorbed by the body)

https://www.cityofcorinth.com/waterqualityreport